

17ME52
Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Dynamics of Machinery

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain in brief 'D`Alembert's principle'.
(04 Marks)
b. For the mechanism shown in Fig. Q1(b), determine the torque on the link $A B$ for the static equilibrium of mechanism, if

Fig. Q1(b)
i) $\mathrm{F}_{1}=20 \mathrm{~N}$ and $\mathrm{F}_{2}=0$
ii) $\mathrm{F}_{1}=0$ and $\mathrm{F}_{2}=25 \mathrm{~N}$
iii) $\mathrm{F}_{1}=20 \mathrm{~N}$ and $\mathrm{F}_{2}=25 \mathrm{~N}$.
(16 Marks)
OR
2 The crank and connecting rod of a vertical petrol engine running at 1800 rpm are 60 mm and 270 mm respectively. The diameter of the piston is 100 mm and the mass of reciprocating parts is 1.2 kg . During the expansion stroke when the crank has turned 20° from the top dead centre (in CW direction), the gas pressure is $650 \mathrm{kN} / \mathrm{m}^{2}$. Find
i) The net force on the piston.
ii) Net load on the gudgeon pin.
iii) Thrust on cylinder walls.
iv) Speed at which the gudgeon pin load reverses in direction.
(20 Marks)

Module-2

3 a. Explain in brief 'Static Balancing'.
(04 Marks)
b. A shaft carries four masses in parallel planes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , in the order along it. The masses at B and C are 18 kg and 12.5 kg respectively and each has an eccentricity of 6 cm . The masses at A and D have an eccentricity of 8 cm . The angle between the masses B and C is 100° and that between the masses at B and A is 190° (both angles being measured in the same direction). The axial distance between the planes A and B is 10 cm and that between B \& C is 20 cm . If the shaft is in complete dynamic balance, find
i) the masses at A and D.
ii) the distance between the planes C and D
iii) the angular position of the mass at D .
(16 Marks)

17ME52

4 A vertical single cylinder opposed piston engine is shown in Fig. Q4. The lower piston is connected to the centre crank, whereas the upper piston operates the two outer cranks which are at 180° to the centre crank. The stroke of the lower piston is 50 cm . The mass of reciprocating parts is 150 kg for the lower piston and 225 kg for the upper piston. Find the stroke of the upper piston so that the primary force is balanced. If the central connecting rod is 100 cm long and each outer connecting rod is 200 cm long, determine the maximum value of secondary unbalanced force and the corresponding crank positions. The engine speed is 180 rpm and has a balanced crank.
(20 Marks)

Fig. Q4

Module-3

5 a. Define Angle of Heel. Derive an expression for angle of heel for a 2 wheeler while negotiating curve.
(10 Marks)
b. The arms of a Porter goyernor are 17.8 cm long and are hinged at a distance of 3.8 cm from the axis of rotation. The mass of each ball is 1.15 kg and the mass on the sleeve is 20 kg . the Governor sleeve begins to rise at 280 rpm when the links are at an angle of 30° to the vertical. Find the friction force assuming it to be constant.

OR

a. Define i) Controlling force ii) Effort iii) Power of a Governor.
(06 Marks)
b. The rotor of the turbine of a ship has a mass of 2500 kg and rotates at 3200 rpm counter clockwise when viewed from stern. The rotor has a radius of gyration of 0.4 m . Determine the gyroscopic couple and its effect when
i) The ship steers to left in a curve of 80 m radius at a speed of 15 knots $(1$ knot $=1860 \mathrm{~m} / \mathrm{hr})$.
ii) The ship pitches 5° above and 5° below the normal position as SHM with a periodic time 40S, and bow is descending with its maximum velocity.
Find the maximum angular acceleration during pitching.
(14 Marks)

Module-4

7 a. Add the following SHMs analytically and graphically
$\mathrm{x}_{1}(\mathrm{t})=3 \sin \left(\mathrm{wt}+60^{\circ}\right) ; \quad \mathrm{x}_{2}(\mathrm{t})=5 \cos \left(\mathrm{wt}+120^{\circ}\right)$.
(10 Marks)
b. Determine an expression for natural frequency of Spring - mass system by energy method, taking mass of spring into account.
(10 Marks)

OR

a. Define i) Degree of freedom
ii) Natural frequency
iii) Time period
iv) Amplitude v) Phase (difference) angle.
(10 Marks)
b. Determine an expression for the natural frequency of the system shown in Fig. Q8(b). Modulus of rigidity of the material is ' G ' and the system undergoes free vibrations (torsional vibrations) of degree of freedom $=1$.

Fig. Q8(b)

Module-5
9 a. State various types of damping and explain in brief.
(06 Marks)
b. Define Logarithmic decrement and obtain an expression for the same.
(08 Marks)
c. Obtain differential equation of motion for spring mass dashpot system, clearly showing free body diagrams.
(06 Marks)

OR

10 a. In a Single - degree undamped free vibrations, a suspended mass of 8 kg makes 30 oscillations in 18 seconds. With viscous damping, the amplitude decreases to 0.25 of the initial value after 5 oscillations for the same system. Determine i) Stiffness
ii) Logarithmic decrement iii) Damping factor iv) Damping coefficient. (10 Marks)
b. A machine part having a mass of 2.5 kg vibrated in a viscous medium. A harmonic exciting force of 30 N acts on the part and causes a resonant amplitude of 14 mm with a period of 0.22 S . Find the damping coefficient.
(10 Marks)

